ASME/IGTI Turbo Expo 2005, Reno, Nevada

Session: Manufacturing Materials and Technology Track Paper No. GT2005-68884

Monitoring Diffusion Coating Aging with Multi-Frequency Eddy Current MWM Sensors

Vladimir Zilberstein, Robert Lyons, Andrew Washabaugh, Dave Grundy, Chris Craven, Neil Goldfine JENTEK Sensors

> Pramod Khandelwal, Tony Brozan, and William J. Brindley **Rolls-Royce**

> > June 8, 2005

Diffusion Coatings

- Widely used to protect hot gas path components in landbased gas turbines and jet engines
- Aging affects protective properties of nickel aluminide and platinum aluminide coatings
- Effective nondestructive evaluation of the aged coatings is critical for refurbish/replace/run decisions

Objective

• Investigate the capability of model-based eddy current sensors to monitor aging of nickel aluminide and platinum aluminide coatings

Specimens

- 28 specimens with aluminide coating
- 28 specimens with platinum aluminide coating
- Each specimen: 25 mm x 25 mm squares

Thermal Exposure

- Four specimens in each group baseline
- The other specimens exposed to 1-hr thermal cycles $(T_{max} = 2000^{\circ}F)$
- Number of thermal cycles: 20, 50, 100, 200, 300, 400
- Four replicates exposed to the same number of thermal cycles

Measurement Method

- Multifrequency electrical conductivity measurements (2-16 MHz)
- Eddy current Meandering Winding Magnetometer
- Two-unknown model (conductivity and lift-off in an infinite half space material)

JENTEK GridStation Setup with 7-Channel Instrument and 7-Channel MWM-Array Probe

Single Channel MWM Probe with Interchangeable Tips

Meandering Winding Magnetometer (MWM®)

Transfer Impedance = Secondary Voltage / Primary (input) Current

Scanning Multichannel MWM-Arrays

Conductivity / Lift-off Measurement Grids

Example Grids for the MWM-FS35 Sensor and Aluminum

Example Applications

- Engines/Gas Turbines -Crack Detection
- Coatings
 - -TBC, Bond Coat, & Substrate Characterization
- Alpha Case Detection
- Structures
 - -Crack Detection (Hole scans, etc)
 - -Stress and Fatigue Monitoring
 - -Residual Stress and Fatigue Damage Mapping
 - -Prognostics & Health Management
 - -Cold Work QA
- Corrosion Damage Mapping
- Weld Characterization

Engine Disk Slot Crack Detection

727 Third Layer Cracks

Cold Work QA

Bolt Hole Scans

Aluminum Bending Fatigue Damage

Corrosion - C-130 Flight Deck Chine Plate

Friction Stir Welds

Residual Stress Distribution in Steel (applicable to landing gear)

MWM and IDED Characterization of Hot-Gas Path Components

- Diffusion coatings
- MCrAlY coatings
- TBC
- Crack detection
- Hot corrosion

MWM Measured Conductivity vs. Frequency

Two repeated MWM measurements on different days

MWM Frequency Response Parameter

• Multifrequency conductivity function that can capture near-surface material condition

MWM Response vs. Number of Thermal Cycles

"Top" and "bottom" refer to the coating on opposite sides of each specimen

Aluminum Reservoir

- Aluminum distribution from point-by-point EDS measurements
- Integrated available aluminum (IAA)
- IAA was determined from a summation of excess Al content at the various distances from the surface

Aluminum Reservoir

• IAA was calculated as

$$\Sigma (Al_{i,9+} - Al_{sub})$$

Where $Al_{i, 9+}$ is the local aluminum content (from EDS) exceeding 9 percent

ASME Turbo 2005

Al_{sub} is the aluminum content in the substrate

Normalized MWM Frequency Response and EDS-Based IAA vs. Thermal Cycles

The error bars correspond to \pm one standard deviation of the values for each exposure

Normalized MWM Frequency Response and EDS-Based IAA vs. Thermal Cycles

The error bars correspond to \pm one standard deviation of the values for each exposure

Scanning Multichannel MWM-Array

MWM-Array Conductivity Image of an Aged Turbine Component

ASTM Standard

Designation: E 2338 – 04

Standard Practice for Characterization of Coatings Using Conformable Eddy-Current Sensors without Coating Reference Standards¹

This standard is issued under the fixed designation E 2338; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers the use of conformable eddycurrent sensors for nondestructive characterization of coatings without standardization on coated reference parts. It includes the following: (1) thickness measurement of a conductive coating on a conductive substrate, (2) detection and characterization of local regions of increased porosity of a conductive coating, and (3) measurement of thickness for nonconductive coatings on a conductive substrate or on a conductive coating. This practice includes only nonmagnetic coatings on either magnetic ($\mu \neq \mu_0$) or nonmagnetic ($\mu = \mu_0$) substrates. This practice can also be used to measure the effective thickness of a process-affected zone (for example, shot peened layer for aluminum alloys, alpha case for titanium alloys). For specific types of coated parts, the user may need a more specific procedure tailored to a specific application. 1.2 Specific uses of conventional eddy-current sensors are

- D 1186 Test Methods for Nondestructive Measurement of Dry Film Thickness of Nonmagnetic Coatings Applied to a Ferrous Base
- D 1400 Test Method for Nondestructive Measurement of Dry Film Thickness of Nonconductive Coatings Applied to a Nonferrous Metal Base
- E 376 Practice for Measuring Coating Thickness by Magnetic-Field or Eddy-Current Electromagnetic Methods
- E 543 Practice for Agencies Performing Nondestructive Testing
- E 1004 Test Method for Electromagnetic (Eddy-Current) Measurements of Electrical Conductivity
- E 1316 Terminology for Nondestructive Examinations
- G 12 Test Method for Nondestructive Measurement of Film Thickness of Pipeline Coatings on Steel
- 2.2 ASNT Documents:3
- SNT-TC-1A Recommended Practice for Personnel Oualifi-

Conclusions

- Single-channel MWM sensors and multi-channel imaging MWM-Arrays provide new capabilities for inspecting gas turbine components
- These sensors permit tracking of features of interest for a population of components
- These conformable sensors allow convenient manual and automated inspection on complex surfaces

Conclusions (cont.)

- MWM technology can differentiate between as-manufactured coating condition and the various conditions of aged samples
- MWM sensors and MWM-Arrays provide a means of characterizing aged nickel aluminide and platinum aluminide coatings
- Multiple frequency MWM technique can be implemented for characterization of diffusion coatings and base metals before and after component refurbishment

For More Information about JENTEK Sensors, Inc.

JENTEK Sensors, Inc. 110-1 Clematis Avenue Waltham, MA 02453

Phone: 781-642-9666 Email: jentek@shore.net

